Al-Farabi Kazakh National University Faculty of Physics and Technology Chair of Theoretical and Nuclear Physics

Syllabus Spring semester, 2017-2018academicyear

Academic course information

Discipline's	Discipline's	Туре	No. of hours per week			Number of	ECTS
code	title		Lect.	Pract.	Lab.	credits	
IGTF 3302	Selected	Elective	2	1	0	3	5
	chapters of						
	the theoretical						
	physics						
Lecturer	TakibayevN.Zh., d.s.pm., academic		nic Office	hours	Scheduled		
	of NAS RK, professor						
e-mail	E-mail: <u>takibayev@gmail.com</u>						
Telephone	Telephone: 2925-133; 8-777-704-		4- Audito	ory	319		
number	0396						

Academic	Typeofcourse (theoretical, practical; basic, elective) and its purpose (role and			
presentation of	place of the course in the educational program): Theoretical Nuclear Physics.			
the course	The aim of the course: to give the students the deep understanding of			
	themodern physics of nucleus of atoms and quantum mechanics of many-particle			
	systems and self study, to form a system of competences in the context of			
	qualification requirements:*			
	A) be able to -demonstrate acquired knowledge (specifically) and it's			
	understanding; - demonstrate an understanding of the over all structure of the			
	study field and the relations between its elements (specifically);			
	B) be able to – include new knowledge in the context of basic knowledge,			
	interpret its contents; - analyze educational situation and offer direction to solve			
	it; - use methods (research, calculation, analysis, etc.) inherent to the field of			
	study (specifically) individually or in a group teaching and research			
	activities;			
	C) be able to - synthesize, interpret and evaluate the learning out comes of			
	discipline, modules, midterm exam content (specifically);			
	D) be able to – constructive educational and social interaction and cooperation in			
	the group; - propose to consider a problem, to reason its importance; - accept			
	E) be able to reaccorize the role of taken course in the implementation of \mathbf{E}			
	E) be able to - recognize the role of taken course in the implementation of individual learning paths, wThe system of descriptor works must be used during			
	the formation of account (Leal in Analisetica 2) at Active and interaction			
	the formation of competences (Look in Application 2) **Active and interactive			
	methods is recommended to ensure deeper understanding and learning of			
	(in dividual material and to achieve learning out comes of the course			
D '''	(individual researches, group projects, case studies and there methods).			
Prerequisites	Mathematical analysis, the theory of functions of complex variables,			
	differential equations, mathematical physics, statistical physics, physics of			
	elementaryparticles.			
Post requisites	The theory of gauge fields and electroweak interactions, chromodynamics,			
	quantum gravity.			

Information	Literature (with an indic	cation of the authors ar	nd data output), the	
resources	availability(number), software and consumables with information about where			
	you can get them. (8-9)			
	Recommended:			
	1. Masud Chaichian, Hugo Prez Rojas. Anca Tureanu. Basic Concepts in			
	Physics, Springer He	idelberg New York Dordrech	ht London, 2014, ISBN	
	978-3-642-19597-6 2.			
	2. G.H.Wannier, Statist	ical Physics, Dover, New Yo	rk, 1987.	
	3. L.D. Landau, E.M. Lifshitz, Statistical Physics, 3rd edn. Pergamon,			
	London, 1981.			
	4. R.P. Feynman, The Feynman Lectures on Physics, Addison Wesley,			
	Massachusetts, 1969.			
	5. M. Chaichian, I. Merches, A. Tureanu, <i>Electrodynamics</i> , Springer, Berlin			
	Heidelberg, 2014.			
	6. F. Mandl, G. Shaw, <i>Quantum Field Theory</i> , Wiley, London, 2010.			
	7. L.D. Landau, E.M.	Lifshitz, Quantum mechanic	es, 3rd edn. Pergamon,	
	London, 1989, p. 768.			
	8. L. B. Okun: <i>Leptons and quarks</i> , translated from Russian by V. I. Kisin,			
	North-Holland, 1982			
	Additional:			
	1. R.K. Pathria, <i>Statistic</i>	cal Mechanics, 2nd edn., Else	evier, Oxford, 2006.	
	2. C. Kittel, <i>Solid State</i>	Physics, 8th edn., Wiley, New	w York, 2005.	
	3. F. Halzen, A. Martin, Quarks and leptons: An Introductory Course in			
	Modern Particle Phys	sics. USA, 1984.		
	4. M. Chaichian, A.	Demichev, Path Integrals	in Physics. Vol. 1:	
	Stochastic processes	andquantum mechanics, IOP	, Bristol, UK, 2001.	
	5. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum			
	Information, Cambridge University Press, Cambridge, 2010.			
	6. I.D. Lawrie, A Unified Grand Tour of Theoretical Physics, IOP, Bristol,			
	2002.			
Academic	Academic Behavior Rules:			
policy of the	Compulsory attendance in the classroom, the impermissibility of late attendance.			
course in the	Without advance notice of absence and undue tardiness to the teacher is			
context of	estimated at 0 points.			
university	Academic values:			
moral and	Inadmissibility of plagiarism, forgery, cheating at all stages of the knowledge			
ethical values	Student's honor)			
Evoluction and	Criteria based evaluation:			
Evaluation and	Assessment of looming outcomes in completion with descriptors (verification of			
nolicy	compatence formation during midterm control and examinations)			
poney	Summative evaluation •			
	evaluation of the presence and activity of the work in the classroom: assessment			
	of the assignment, independent work of students			
	The formula for calculating the final grade			
		IC1 + IC2		
	Final grade for the discipline = $\frac{102 + 102}{2} \cdot 0.6 + 0.1$ MT + 0.3FC			
	Below are the minimum est	imates in percentage terms:		
	5% - 100%: A	90% - 94%: A-		
	85% - 89%: B+	80% - 84%: B	75% - 79%: B-	
	70% - 74%: C+	65% - 69%: C	60% - 64%: C-	
	55% - 59%: D+	50% - 54%: D-	0% -49%: F	

Wee	Topic title (lectures, practical classes, Independent work of	Number	Maximum
ks	students)	of hours	score
	Module 1		
1	Lecture-1 (L-1). Laws of Thermodynamics, Thermodynamic	2	-
	Potentials.		
	Seminar -1 (S-1). Operators and inverse operators, the	1	5
	uncertainty principle and the principle of superposition,		
	matrices.		
2	L-2. Schrödinger equation, flux density, linear oscillator, potential box,	2	-
	the transmission coefficient.		
	S-2. Energy and momentum, transformation matrices, matrix density.	1	5
3	L-3. Angular momentum, eigen values and eigen functions, parity states.	2	-
	S-3. Motion in a centrally symmetric field. Spherical coordinates,	1	5
	decomposition in plane waves.		• •
	SSWT 1.Prepare the report: Motion in a centrally symmetric field.	1	20
	Spherical coordinates, decomposition in plane waves.	-	
4	L-4. Electrostatic and Gravitational Fields. Conductors,	2	-
	Semiconductors, Isolators.	1	
	S-4. Gauss's Law for Electric Fields. Gauss's Law for	1	5
	Magnetism.		
_	Iviodule 2	2	
5	L-5. Maxwell's Equations, Lorentz Force.	2	-
	S-5. Fleids in a Medium.	1	<u> </u>
6	SSW1 2. Prepare the report. Fields III a Mediulli.	1	20
0	and Ferromagnetism	2	-
	S -6 Phase Transitions Spontaneous Symmetry Breaking	1	5
7	J. 7 Plack Pody Podiction Dispersion of Light	1	5
/	S. 7. Deflection and Defrection	<u> </u>	- 5
	S7. Reflection and Reflection and Pafraction	1	25
	1st Intermediate Control (IC1)	1	<u> </u>
8	Midtorm (MT)		100
0 8	Vinuterin (W1)	2	100
0	Mechanics	2	-
	S-8 Harmonic Oscillator Ladder Operators	1	5
	Madel Operators.	•	5
0	Infodule 5	2	
9	L-9. Emission and Absorption of Radiation. Tunner.	4	-
	S-9. Exchange interaction. Exchange Energy and	I	5
	SSWT 4 Drapare the report: Daradoves in Quantum	1	10
	Mechanics Schrodinger Cat EPR Einstein Podolsky Rosen	I	10
	Paradox		
10	I -10 Quantized Fields and Particles Dirac Equation	2	_
10	S-10. Natural Units and the Metric Used in Particle Physics	1	5
11	I-11 Quantum Electrodynamics Unitarity Feynman	2	-
11	Diagrams	-	
	S-11. Real and Virtual Particles in Feynman Diagrams	1	5
	SSWT 5. Prepare the report: Compton Scattering. the	- 1	10

Calendar (schedule) the implementation of the course content:

	formation of electron-positron pairs.		
12	L-12. Quantum Vacuum and Casimir Effect. Principle of	2	-
	Gauge Invariance. CPT Symmetry.		
	S-12. Electron Self-energy. Vacuum Polarization.	1	5
13	L-13. Theory of Weak Interactions, YangMills Fields,	2	-
	Nambu-Goldstone Theorem.		
	S-13. Electroweak Phase Transition. Diagram techniques.	1	5
	SSWT 6. Prepare the report: Quantum numbers. Parity. C, P	1	20
	and T transformations.		
14	L-14. Higgs Mechanism, GlashowSalam-Weinberg Model.	2	-
	S-14. Neutrino Oscillations and Masses.	1	5
15	L-15. Hadrons and Quarks, Quantum Chromodynamics.	2	-
	Grand Unification.		
	S-15. Inflation, Supersymmetry, Superstrings.	1	5
	SSW 7. Prepare the report: Inflation, Supersymmetry,	1	25
	Superstrings		
	2 nd Intermediate Control (IC2)		100
	Exam		100
	Total		100
Note: Independent work of students with teacher is 7 hours for semester. 3, 5, 7, 9, 11, 13			
and 15 weeksareincludedintosyllabus (assignmentsubmission)			

Lecturer	TakibayevN.Zh.
Head of the Department	Abishev M.E.
Chairman of the Faculty Methodical Bureau	A.T.Gabdullina A.T.